If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-18x+4=0
a = 5; b = -18; c = +4;
Δ = b2-4ac
Δ = -182-4·5·4
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{61}}{2*5}=\frac{18-2\sqrt{61}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{61}}{2*5}=\frac{18+2\sqrt{61}}{10} $
| 60=0.8x+30 | | 3x-1/5=2x+3/7 | | 3x-1/5=2x+3*5 | | (x)^2-60x=0 | | 5^(3x-1)=2^(4x) | | 5f-5=40 | | 5y+1=2y+10 | | -1-4x=6x-7 | | 25x^2-100x+51=0 | | 25x^2-30x+51=0 | | 5(-4y+-8)=-80 | | 5(-4y+8)=-80 | | -2(2x-3)=3(x+1+10 | | 5x^2-18x+14=0 | | 3*6^(x-1)+9*2^(x+2)-12^x-18=0 | | 2(d-4)=5(2d+1) | | 2(d-4)=5(2+1) | | 23^(x^2)*24^(4x-9)=2x | | 3f-1.25=11.5 | | 4r+5=-19-3r | | X^2+5x-3=2x+5 | | (-3)p=-243 | | 16-2x=5x12 | | 2x-5x=27-6 | | 7^(2x+3)=1 | | 5y+14=25 | | 3*1-y=5 | | 5/y=17/13 | | (150-2a)+2a=150 | | -4(3-4x)-2(x-1=12x | | 127+3x=147 | | 55x-100=450 |